1,356 research outputs found

    Reconstruction of Objects by Direct Demodulation

    Full text link
    High resolution reconstruction of complicated objects from incomplete and noisy data can be achieved by solving modulation equations iteratively under physical constraints. This direct demodulation method is a powerful technique for dealing with inverse problem in general case. Spectral and image restorations and computerized tomography are only particular cases of general demodulation. It is possible to reconstruct an object in higher dimensional space from observations by a simple lower dimensional instrument through direct demodulation. Our simulations show that wide field and high resolution images of space hard X-rays and soft gamma rays can be obtained by a collimated non-position-sensitive detector without coded aperture masks.Comment: 11 pages, 6 figure

    Sources of CP Violation in the Two-Higgs Doublet Model

    Get PDF
    Assuming CP violation arises solely through the Higgs potential, we develop the most general two-Higgs doublet model. There is no discrete symmetry that distinguishes the two Higgs bosons. It is assumed that an approximate global family symmetry sufficiently suppresses flavor-changing neutral scalar interactions. In addition to a CKM phase, neutral boson mixing, and superweak effects, there can be significant CP violation due to charged Higgs boson exchange. The value of ϵ′/ϵ\epsilon'/\epsilon due to this last effect could be as large as in the standard model.Comment: 8 pages, RevTex, (appear in Phys. Rev. Lett. 73, (1994) 1762 ), CMU-HEP94-1

    Response, relaxation and transport in unconventional superconductors

    Full text link
    We investigate the collision-limited electronic Raman response and the attenuation of ultrasound in spin-singlet d-wave superconductors at low temperatures. The dominating elastic collisions are treated within a t-matrix approximation, which combines the description of weak (Born) and strong (unitary) impurity scattering. In the long wavelength limit a two-fluid description of both response and transport emerges. Collisions are here seen to exclusively dominate the relaxational dynamics of the (Bogoliubov) quasiparticle system and the analysis allows for a clear connection of response and transport phenomena. When applied to quasi-2-d superconductors like the cuprates, it turns out that the transport parameter associated with the Raman scattering intensity for B1g and B2g photon polarization is closely related to the corresponding components of the shear viscosity tensor, which dominates the attenuation of ultrasound. At low temperatures we present analytic solutions of the transport equations, resulting in a non-power-law behavior of the transport parameters on temperature.Comment: 22 pages, 3 figure

    A Compact Linear Programming Relaxation for Binary Sub-modular MRF

    Full text link
    We propose a novel compact linear programming (LP) relaxation for binary sub-modular MRF in the context of object segmentation. Our model is obtained by linearizing an l1+l_1^+-norm derived from the quadratic programming (QP) form of the MRF energy. The resultant LP model contains significantly fewer variables and constraints compared to the conventional LP relaxation of the MRF energy. In addition, unlike QP which can produce ambiguous labels, our model can be viewed as a quasi-total-variation minimization problem, and it can therefore preserve the discontinuities in the labels. We further establish a relaxation bound between our LP model and the conventional LP model. In the experiments, we demonstrate our method for the task of interactive object segmentation. Our LP model outperforms QP when converting the continuous labels to binary labels using different threshold values on the entire Oxford interactive segmentation dataset. The computational complexity of our LP is of the same order as that of the QP, and it is significantly lower than the conventional LP relaxation

    Constraints on scalar-tensor theories of gravity from observations

    Full text link
    In spite of their original discrepancy, both dark energy and modified theory of gravity can be parameterized by the effective equation of state (EOS) ω\omega for the expansion history of the Universe. A useful model independent approach to the EOS of them can be given by so-called Chevallier-Polarski-Linder (CPL) parametrization where two parameters of it (ω0\omega_{0} and ωa\omega_{a}) can be constrained by the geometrical observations which suffer from degeneracies between models. The linear growth of large scale structure is usually used to remove these degeneracies. This growth can be described by the growth index parameter γ\gamma and it can be parameterized by γ0+γa(1−a)\gamma_{0} + \gamma_{a} (1 - a) in general. We use the scalar-tensor theories of gravity (STG) and show that the discernment between models is possible only when γa\gamma_a is not negligible. We show that the linear density perturbation of the matter component as a function of redshift severely constrains the viable subclasses of STG in terms of ω\omega and γ\gamma. From this method, we can rule out or prove the viable STG in future observations. When we use Z(ϕ)=1Z(\phi) =1, FF shows the convex shape of evolution in a viable STG model. The viable STG models with Z(ϕ)=1Z(\phi) = 1 are not distinguishable from dark energy models when we strongly limit the solar system constraint.Comment: 19 pages, 20 figures, 2 tables, submitted to JCA

    Magneto-transport in a quantum network: Evidence of a mesoscopic switch

    Full text link
    We investigate magneto-transport properties of a θ\theta shaped three-arm mesoscopic ring where the upper and lower sub-rings are threaded by Aharonov-Bohm fluxes ϕ1\phi_1 and ϕ2\phi_2, respectively, within a non-interacting electron picture. A discrete lattice model is used to describe the quantum network in which two outer arms are subjected to binary alloy lattices while the middle arm contains identical atomic sites. It is observed that the presence of the middle arm provides localized states within the band of extended regions and lead to the possibility of switching action from a high conducting state to a low conducting one and vice versa. This behavior is justified by studying persistent current in the network. Both the total current and individual currents in three separate branches are computed by using second-quantized formalism and our idea can be utilized to study magnetic response in any complicated quantum network. The nature of localized eigenstates are also investigated from probability amplitudes at different sites of the quantum device.Comment: 7 pages, 9 figure

    Novel CP-violating Effects in B decays from Charged-Higgs in a Two-Higgs Doublet Model for the Top Quark

    Full text link
    We explore charged-Higgs cp-violating effects in a specific type III two-Higgs doublet model which is theoretically attractive as it accommodates the large mass of the top quark in a natural fashion. Two new CP-violating phases arise from the right-handed up quark sector. We consider CP violation in both neutral and charged B decays. Some of the important findings are as follows. 1) Large direct-CP asymmetry is found to be possible for B+- to psi/J K+-. 2) Sizable D-anti-D mixing effect at the percent level is found to be admissible despite the stringent constraints from the data on K-anti-K mixing, b to s gamma and B to tau nu decays. 3) A simple but distinctive CP asymmetry pattern emerges in decays of B_d and B_s mesons, including B_d to psi/J K_S, D+ D-, and B_s to D_s+ D_s-, psi eta/eta^prime, psi/J K_S. 4) The effect of D-anti-D mixing on the CP asymmetry in B+- to D/anti-D K+- and on the extraction of the angle gamma of the unitarity triangle from such decays can be significant.Comment: 32 pages, 5 figures, section V.A revised, version to appear in PR

    Accelerating universe from F(T) gravity

    Full text link
    It is shown that the acceleration of the universe can be understood by considering a F(T) gravity models. For these F(T) gravity models, a variant of the accelerating cosmology reconstruction program is developed. Some explicit examples of F(T) are reconstructed from the background FRW expansion history.Comment: 13 pages, references adde

    Temperature enhanced persistent currents and "Ï•0/2\phi_0/2 periodicity"

    Full text link
    We predict a non-monotonous temperature dependence of the persistent currents in a ballistic ring coupled strongly to a stub in the grand canonical as well as in the canonical case. We also show that such a non-monotonous temperature dependence can naturally lead to a ϕ0/2\phi_0/2 periodicity of the persistent currents, where ϕ0\phi_0=h/e. There is a crossover temperature T∗T^*, below which persistent currents increase in amplitude with temperature while they decrease above this temperature. This is in contrast to persistent currents in rings being monotonously affected by temperature. T∗T^* is parameter-dependent but of the order of Δu/π2kB\Delta_u/\pi^2k_B, where Δu\Delta_u is the level spacing of the isolated ring. For the grand-canonical case T∗T^* is half of that for the canonical case.Comment: some typos correcte
    • …
    corecore